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Abstract

In this paper we list all affine vertex operator algebras of positive integral levels whose
dimensions of spaces of characters are at most 5 and show that a basis of the space of
characters of each affine vertex operator algebra in the list gives a fundamental system of
solutions of a modular linear differential equation. Further we determine the dimensions of
the spaces of characters of affine vertex operator algebras whose numbers of inequivalent
simple modules are not exceeding 20.
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Introduction

A modular linear differential equation (MLDE for short) of weight k is a linear differential
equation ϑn

kf +
∑n−1

j=0 P2(n−j)ϑ
j
kf = 0, where ϑk is the Serre derivation of weight k and P2j is

a classical modular form of weight 2j. This has a regular singularity at q = 0 where q = e2πiτ .
The MLDEs appear and play important roles in 2-dimensional conformal field theory and
number theory. In [15], S. D. Mathur, S. Mukhi and A. Sen classified rational conformal
field theories whose partition functions (characters) satisfy 2nd order MLDEs. On the one
hand, in number theory, M. Kaneko and D. Zagier ([12]) introduced 2nd order MLDEs (called
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Kaneko-Zagier equation) in the study of supersingular j-invariants of elliptic curves. These
two 2nd order MLDEs were proved to be equivalent in [11].

In this paper we study some connections between MLDEs and vertex operator algebras
(which are the mathematical counterpart of conformal field theories). One of the most im-
portant features in the theory of vertex operator algebras (VOAs) is the modular invariance
property of characters of simple modules ([19]). The character of a simple module M of
a VOA is defined by trM qL0−c/24 (q = e2πiτ ), where c is the central charge of V and L0 is
the grading operator. In [19] it was shown that if a VOA is C2-cofinite and rational, then
there is a linear differential equation with modular coefficients that every character satisfies.
This linear differential equation was shown to be a MLDE in [2, Lemma 6.3]. By using this
result it was shown that any character of a simple module converges on the upper-half plane
and the space of characters is invariant under the slash action with weight 0 of SL2(Z). In
other words, the characters of simple modules form a vector-valued modular form of weight 0
on SL2(Z).

It is known in cases of several affine VOAs ([15]) and Virasoro minimal models ([3, 4,
16, 17]) that there are MLDEs whose spaces of solutions coincide with those of characters.
However, since any solution of the 1st order MLDE of weight 0 is constant, the character of
a VOA with a unique simple module (such VOAs are called holomorphic in the theory of
VOAs) does not satisfy the 1st order MLDE of weight 0. For instance, the affine VOA LE8, 1

associated with the finite-dimensional simple Lie algebra of type E8 of level 1 has a unique
simple module whose character is j(τ)1/3, where j(τ) is the j-function. It is known in [15]
(also see [11]) that the character of LE8, 1 satisfies the 2nd order MLDE of weight 0. Another
example is the affine VOA LA2, 3 associated with the finite-dimensional simple Lie algebra of
type A2 of level 3. The number of inequivalent simple LA2, 3–modules is 10 and the dimension
of the space of characters is 6. However, any basis of the space of characters of LA2, 3 does
not form a fundamental system of solutions of any 6th order MLDE of weight 0 (see Table 4
in §4). Therefore it seems to be natural to ask if the space of characters of a VOA has a
MLDE whose fundamental system of solutions is given by a basis of the space of characters.

The VOAs appeared in the classification given in [15] are all affine VOAs of level 1
associated with finite-dimensional simple Lie algebras of the Deligne exceptional series ([1]).
Hence, motivated by this fact, we intensively study spaces of characters of rational and
C2-cofinite affine VOAs. Let g be a complex finite-dimensional simple Lie algebra, ĝ the
associated affine Lie algebra, and Lg, k the irreducible integrable highest weight ĝ-module
with highest weight 0 of positive integral level k. Then Lg, k is a rational and C2-cofinite
VOA and Lg, k(Λ), where Λ is a dominant integral weight of level k, forms the complete set
of inequivalent simple Lg, k–modules ([5]). In this paper we determine the dimension of the
space of characters of Lg, k with at most 20 simple modules, and we find that the affine VOAs
whose bases of the spaces of characters give fundamental systems of solutions of MLDEs if
the dimensions of the spaces of characters are at most 5 (except for LE8, 1).

An integrable highest weight irreducible ĝ-module Lg, k(Λ) is a module of the Virasoro
algebra of central charge cg, k = k dim g/2(k+h∨) by the Sugawara construction (see [8, 5]),
where h∨ is the dual Coxeter number. The ĝ-module Lg, k(Λ) is decomposed into a direct
sum of finite-dimensional eigenspaces of L0. Then there is a rational number hΛ such that
L0-eigenvalues of Lg, k is included in the set hΛ + Z≥0 and hΛ is called the conformal weight
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of Lg, k(Λ). The lowest power in q of the character of Lg, k(Λ) is hΛ − cg, k/24. Therefore, if
the conformal weights are mutually distinct, by the definition of characters, the dimension of
the space of characters coincides with the number of inequivalent simple modules. It happens
that inequivalent simple modules have the same conformal weight. Then we may use diagram
automorphisms of affine Lie algebras and the theory of S-matrix to check if the corresponding
characters are linear independent or not.

In [14] G. Mason introduced the concept of modular Wronskian of vector-valued modular
forms on SL2(Z). It is also proved that component functions of a vector-valued modular form
constitute a fundamental system of a MLDE if and only if the modular Wronskian never
vanishes on the upper half-plane, which we call non-zero Wronskian condition. In many
situations this condition is confirmed by looking at several powers in q of each character.
Particularly, it is not hard to check non-zero Wronskian condition if an affine VOA has
mutually distinct conformal weights. It is worthy to say that many affine VOAs have mutually
distinct conformal weights.

The paper is organized as follows. In §1 we recall definitions of vector-valued modular
forms, modular linear differential equations and non-zero Wronskian condition. In §2 we
review the theory of affine Lie algebras and affine VOAs. Several relations between characters
and diagram automorphisms are also discussed here. The classification of affine VOAs by the
dimensions of the spaces of characters (up to dimension 5) is given in §3. We also take account
of non-zero Wronskian condition for these affine VOAs. In §4 we give lists of the dimensions
of the spaces of characters of affine VOAs with at most 20 inequivalent simple modules
and non-zero Wronskian condition. The dimensions of characters and non-zero Wronskian
condition are mostly affirmed only by the information of conformal weights and diagram
automorphisms. In some cases we additionally use the action of the transformation τ 7→ −1/τ
(S-matrices) as being done in §5.

In this research we often used the program “kac” given by B. Schellekens who kindly gave
several introductions to the 3rd author K. N.

1 Vector-valued modular forms and modular linear

differential equations

In this paper Γ1 always represents the (full) modular group SL2(Z) with generators

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
,

and holomorphic modular forms on Γ1 are called classical modular forms.
According to [14] we recall the concept of vector-valued modular forms. Let H be the com-

plex upper half-plane and F the space of holomorphic functions on H, and F = t(f1, . . . , fn)
a column vector whose entries are elements in F . For a given integer k the weight k slash
action |kγ of Γ1 on F is defined by F|kγ = t (f1|kγ, . . . , fn|kγ) for every γ ∈ Γ1, where

f |kγ = (cτ + d)−kf(γ(τ)) , γ =

(
a b
c d

)
∈ Γ1 .
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Let ρ : Γ1 → GLn(C) be an n-dimensional complex representation of Γ1. Then we have
a right action of Γ1 on F n by F 7→ ρ(γ)−1F|kγ for every γ ∈ Γ1. A weak vector-valued
modular form of weight k is a Γ1-invariant vector-valued function with respect to this action.

Definition. Let F = t(f1, . . . , fn) be a weak vector-valued modular form of weight k.
Then F is called a (meromorphic) vector-valued modular form of weight k if each component
function fj has a q-expansion which is convergent in a neighborhood of the infinity i∞;

fj(τ) = qλj

∞∑
n=0

an,jq
n , λj ∈ R , q = e2πiτ (τ ∈ H) .

If λj is non-negative we say that fj is holomorphic at the infinity, and if each fj satisfies this
condition then F is called a holomorphic vector-valued modular form.

Remark. Let t(f1, . . . , fn) be a vector-valued modular form of weight k. Then the space
spanned by f1, . . . , fn is a Γ1-module by the slash action |k.

Let ρ be a complex representation of Γ1. LetMk(ρ) andHk(ρ) denote the associated spaces
of meromorphic and holomorphic vector-valued modular forms of weight k, respectively, and
set M(ρ) =

⊕
k∈ZMk(ρ) and H(ρ) =

⊕
k∈ZH(ρ). If ρ is a trivial representation 1, then H(1)

is a ring of classical modular forms on Γ1.
Let t(f1, . . . , fn) ∈ Mk(ρ). If f1, . . . , fn are not linearly independent, then there is a

basis {g1, . . . , gm} of the Γ1-module ⟨f1, . . . , fn⟩C and a unique (up to equivalence) represen-
tation ρ′ : Γ1 → GLm(C) such that t(g1, . . . , gm) ∈ Mk(ρ

′).
Every F = t(f1, . . . , fn) ∈ Mk(ρ) is called normalized if there is an integer 0 ≤ r ≤ n

such that

fj(τ) = qλj + · · · (1 ≤ j ≤ r) , λ1 > λ2 > . . . > λr , fj = 0 (r + 1 ≤ j ≤ n) . (1)

For any F ∈ Mk(ρ) there is an invertible matrix A ∈ GLn(C) such that AF is normalized.
We call AF a normalized form of F. It is obvious that component functions f1, . . . , fn of a
vector-valued modular form t(f1, . . . , fn) ∈ Mk(ρ) are linearly independent if and only if any
entry of a normalized form is not 0 (equivalently n = r in (1)).

Let ϑ k be the Serre derivation acting on meromorphic functions on H;

ϑ k = q
d

dq
− k

12
E2 ,

where E2 is the (quasimodular) Eisenstein series of weight 2;

E2(τ) = 1− 24
∞∑
n=1

(∑
d|n

d
)
qn.

It obviously follows that ϑ k(f |kγ) = (ϑ kf)|k+2γ for every f ∈ F and γ ∈ Γ1 and then
that each ϑ k defines a linear map ϑ k : Mk(ρ) → Mk+2(ρ), where ρ is a representation
of Γ1 on GLn(C). We define ϑn

k = ϑk+2(n−1) ◦ · · ·ϑk+2 ◦ ϑk for a positive integer n. Let
F = t(f1, . . . , fn) be a meromorphic vector-valued modular form of weight k. The modular
Wronskian W (F) introduced in [14] is the n × n determinant given by column vectors as
W (F) = det(F, ϑkF, . . . , ϑn−1

k F). It is proved in [14, Lemma 3.6] that W (F) does not vanish
identically if and only if f1, . . . , fn are linearly independent as usual Wronskian.
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Theorem 1 ([14, Theorem 3.7]). Let F = t(f1, . . . , fn) ∈ Mk(ρ). Suppose that f1, . . . , fn are
linearly independent and normalized as (1). Set λ = λ1 + · · ·+ λn. Then there is a classical
modular form G ∈ Hn(n+k−1)−12λ(1) such that G(i∞) ̸= 0 and W (F) = Gη24λ, where η is
the Dedekind eta function. In particular, we have n(n+ k − 1)− 12λ ≥ 0.

We call the inequality n(k+n− 1)− 12λ ≥ 0 in Theorem 1 Mason’s inequality. For a vector-
valued modular form F whose component functions are linearly independent, a constant λ1+
· · ·+λn in the theorem does not depend on normalization. We denote λ1 + · · ·+λn by λ(F).

Let F = t(f1, . . . , fn) be a vector-valued modular form of weight k whose component
functions f1, . . . , fn are linearly independent. Then by Theorem 1, there is a classical modular
(not cusp) form G of weight n(d+ k − 1)− 12λ(F) such that W (F) = Gη24λ(F). There is the
well-known identity (valence formula)

νi∞(f) +
1

2
νi(f) +

1

3
νeπi/3(f) +

∑
p

νp(f) =
k

12
(2)

for any non-zero classical modular form f of weight k, where p ( ̸= i, eπi/3) runs over Γ1\H
and νp(f) indicates the order of zero at p. Since G is not a cusp form, we see that G has
zeroes in H if and only if G has positive weight. Therefore, the modular Wronskian of F
never vanishes in H if and only if n(n+ k − 1)− 12λ(F) = 0 (cf. [14, 13]).

Let L be a linear differential operator of order n which has the form

L = ϑn
k +

n∑
j=1

P2jϑ
n−j
k , (3)

where P2j is a classical modular form of weight 2j. Since there is no classical modular form
of weight 2, the coefficient function P2 must be zero. It is proved in [14] that q = 0 is a
(unique) regular singular point of L. The linear differential equation L(f) = 0 is called a
modular linear differential equation of weight k (MLDE of weight k for short and see [13] for
more general definition). It is also shown in [14, Theorem 4.1] that the space of solutions of
a MLDE is a Γ1-module with respect to the action |k.

Theorem 2 ([14, Theorem 4.3]). Let F = t(f1, . . . , fn) be a meromorphic vector-valued
modular form of weight k with respect to a representation ρ : Γ1 → GLn(C). Suppose that
f1, . . . , fn are linearly independent and normalized. Then f1, . . . , fn form a fundamental
system of solutions of a modular linear differential equation of weight k if and only if W (F)
never vanishes in H, i.e. n(n+ k − 1)− 12λ(F) = 0.

Let F = t(f1, . . . , fn) be a vector-valued modular form of weight k whose component
functions are linearly independent. We say that F satisfies non-zero Wronskian condition
(NZWC for short) if n(k + n− 1)− 12λ(F) = 0.

2 Preliminaries on affine vertex operator algebras

and their characters

In this section we recall the notion of affine VOAs associated with finite-dimensional simple
Lie algebras and their characters as a VOA.
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2.1 Affine vertex operator algebras

Let g be a finite-dimensional complex simple Lie algebra of rank ℓ. Fix a Cartan subalgebra
of g and let ∆, ∆+, Π = {α1, . . . , αℓ} and Π∨ = {α∨

1 , . . . , α
∨
ℓ } be sets of roots, positive roots,

simple roots, and simple coroots, respectively. We denote by θ the highest root of g and
the normalized Killing form by ( | ), i.e. (θ|θ) = 2. Let Λi ∈ h∗ be a fundamental weight
which is defined by Λi(αj) = δij for every 1 ≤ i ≤ ℓ, and P =

⊕ℓ
i=1 ZΛi the weight lattice.

For a positive integer k, we call by a dominant integral weight of level k an element of the
set P k

+ = {Λ ∈ P |Λ(α∨
i ) ∈ Z≥0 for all 1 ≤ i ≤ ℓ and (θ|Λ) ≤ k}. Let ĝ = g⊗ C[t, t−1]⊕ CK

be the affine Lie algebra associated with g and Lg, k(Λ) the irreducible highest weight ĝ-
module with highest weight Λ and level k, i.e., the central element K acts on Lg, k(Λ) by k.
We denote an element x ⊗ tn ∈ ĝ by xn. In [5] it is shown that for any positive integer k,
the ĝ-module Lg, k (= Lg, k(0)) is a simple VOA. It is known in [5, Theorem 3.1.3] that for a
positive integer k, the list of inequivalent simple Lg, k-modules is given by {Lg, k(Λ) |Λ ∈ P k

+}.
Since the cardinality of P k

+ is finite, the number of simple Lg, k-modules is finite. It follows
form the Sugawara construction (see e.g. [5, 8]) that Lg, k(Λ) (Λ ∈ P k

+) is a module of the
Virasoro algebra of central charge

cg, k =
k dim g

k + h∨
, (4)

where h∨ is the dual Coxeter number of g, and that Lg, k(Λ) =
⊕∞

n=0 Lg, k(Λ)hΛ+n where
each Lg, k(Λ)hΛ+n is a finite-dimensional eigenspace of L0 associated with an eigenvalue hΛ+n.
We call a constant hΛ the conformal weight of Lg, k(Λ) which is known to be given by

hΛ =
(Λ|Λ + 2ρ)

2(k + h∨)
, (5)

where ρ is the Weyl vector, i.e. the sum of all fundamental weights.

Warning. In this paper we use the notation of Dynkin diagrams used in [8, Chapter 6]. The
program “kac” uses the notation of Dynkin diagrams in [6].

2.2 Characters for affine vertex operator algebras

Let g be a finite-dimensional simple Lie algebra and k a positive integer. A character of
a simple Lg, k–module Lg, k(Λ) is a formal power series defined by

chΛ(τ) = trLg, k(Λ) q
L0−cg,k/24 = qhΛ−cg,k/24

∞∑
n=0

dimLg, k(Λ)hΛ+n q
n (q = e2πiτ ) .

Since Lg, k(Λ)hΛ
is a finite-dimensional irreducible g-module of highest weight Λ as shown

in [5], the leading coefficient of the character chΛ (the dimension of Lg, k(Λ)hΛ
) is given by

Weyl’s dimension formula (see [7, §24.2, Corollary]). It is shown in [9] and [19] that chΛ(τ)
absolutely and uniformly converses on the complex upper half-plane and then defines a holo-
morphic function on H. We denote by Xg, k the vector space of characters of all simple
Lg, k–modules.

6



Type Dynkin diagram h∨ cg, k

Aℓ •
1

•
2

· · · •
ℓ− 1

•
ℓ

ℓ+ 1
kℓ(ℓ+ 2)

k + ℓ+ 1

Bℓ •
1

•
2

· · · •
ℓ− 1

•//

ℓ
2ℓ− 1

kℓ(2ℓ+ 1)

k + 2ℓ− 1

Cℓ •
1

•
2

· · · •
ℓ− 1

•oo

ℓ
ℓ+ 1

kℓ(2ℓ+ 1)

k + ℓ+ 1

Dℓ •
1

•
2

· · · •
ℓ− 2

•oooooo ℓ− 1

•
OOO

OOO

ℓ

2ℓ− 2
kℓ(2ℓ− 1)

k + 2ℓ− 2

E6 •
1

•
2

•
3

• 6

•
4

•
5

12
78k

k + 12

E7 •
1

•
2

•
3

• 7

•
4

•
5

•
6

18
133k

k + 18

E8 •
1

•
2

•
3

•
4

•
5

• 8

•
6

•
7

30
248k

k + 30

F4 •
1

•
2

•//

3
•
4

9
52k

k + 9

G2 •
1

•//

2
4

14k

k + 4

Table 1: Dynkin diagrams, dual Coxeter numbers of simple Lie algebras and central charges
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Theorem 3 ([9, 19]). Let g be a finite-dimensional simple Lie algebra and k a positive integer.
Then the space Xg, k is a module of SL2(Z) by the slash |0-action and dimXg, k ≤ |P k

+|.
In particular, the column vector-valued function consisting of characters of all inequivalent
simple Lg, k–modules is a meromorphic vector-valued modular form of weight 0.

Remark. Let {f1, . . . , fn} be a normalized basis of Xg, k. If the vector-valued modular
form t(f1, . . . , fn) satisfies non-zero Wronskian condition, we say that “Lg, k satisfies non-
zero Wronskian condition”.

By the very definition of the characters, we have the following lemma.

Lemma 4. The characters with mutually distinct conformal weights are linearly independent.

We identify the index set {1, 2, . . . , ℓ } with the set of vertices of the Dynkin diagram asso-
ciated with g in the usual way (see Table 1). Let σ̄ be an automorphism of the Dynkin diagram
in Table 1. Then we can extend σ̄ to a Lie algebra automorphism σ : For Chevalley gener-
ators e1, . . . , eℓ, α

∨
1 , . . . , α

∨
ℓ , f1, . . . , fℓ, the automorphism σ of g is defined by σ(ei) = eσ̄(i),

σ(fi) = fσ̄(i), σ(α
∨
i ) = α∨

σ̄(i). Such an automorphism σ is called the diagram automorphism
of g.

Proposition 5 ([7, §12.2]). The groups of automorphisms of Dynkin diagrams are trivial
except for Aℓ, Dℓ and E6.

(1) The group of automorphisms of the Dynkin diagram Aℓ is Z2. The non-trivial automor-
phism σ̄ is given by σ̄(i) = ℓ + 1 − i for each 1 ≤ i ≤ ℓ, where i is a vertex of the Dynkin
diagram.

(2) The group of automorphisms of the Dynkin diagram Dℓ (ℓ > 4) is the permutation
group Z2 of the set of vertices ℓ− 1 and ℓ.

(3) The group of automorphisms of the Dynkin diagram D4 is isomorphic to the symmetric
group S3 of degree 3 which permutes vertices 1, 3, 4 of the Dynkin diagram.

(4) The group of automorphisms of the Dynkin diagram E6 is isomorphic to Z2. The non-
trivial automorphism σ̄ is given by σ̄(i) = 6− i for each 1 ≤ i ≤ 5.

Let σ be a diagram automorphism of g. Then we can define an automorphism of ĝ
by σ(a ⊗ tn) = σ(a) ⊗ tn and σ(K) = K. Each diagram automorphism σ defines a ĝ-
module Lg, k(Λ)

σ by (a ⊗ tn) · v = (σ(a) ⊗ tn)v for every v ∈ Lg, k(Λ) and a ⊗ tn ∈ ĝ.

Write Λ ∈ P k
+ as Λ =

∑ℓ
i=1miΛi where each mi is a non-negative integer. Since (α∨

i )0 · vΛ =
σ(α∨

i )0vΛ = Λ(α∨
¯σ(i)
)vΛ, the highest weight vector vΛ of Lg, k(Λ) is also a highest weight vector

of Lg, k(Λ)
σ with highest weight

∑ℓ
i=1mσ̄(i)Λi, which is denoted by Λσ. Therefore, it follows

from Proposition 5 that Λ ∈ P k
+ if and only if Λσ ∈ P k

+.
Let σ be a diagram automorphism of a finite-dimensional simple Lie algebra g. Then σ can

be extended to an automorphism of the VOA Lg, k. Since, by definition, any automorphism
of a VOA preserves the Virasoro element, the characters chΛ(τ) and chΛσ(τ) must coincide.
Motivated by this fact we introduce an equivalence relation ∼ on P k

+; Λ ∼ Λ′ if and only if

there is a diagram automorphism σ such that Λ′ = Λσ, and set P̃ k
+ = P k

+/ ∼ . By Lemma 4,
we have:
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Proposition 6. Let k be a positive integer and Lg, k an affine vertex operator algebra as-
sociated with a finite-dimensional simple Lie algebra g. Suppose that conformal weights of
simple modules Lg, k(Λ) for Λ ∈ P̃ k

+ are mutually distinct. Then the dimension of the space

of characters of Lg, k is given by |P̃ k
+|.

3 Characters and non-zero Wronskian condition for

affine vertex operator algebras

In this section we show that a basis of the space of characters of an affine VOA whose
dimension of the space of characters is 2, 3, 4, or 5 forms a fundamental system of solutions
of a MLDE of weight 0.

Let g be a finite-dimensional simple Lie algebra of type Xℓ. We denote by LXℓ, k(Λ) the
irreducible highest weight ĝ-module with highest weight Λ. One of the main results in this
paper is:

Theorem 7. An affine vertex operator algebra of positive integral level whose dimension of
the space of characters is not exceeding 5 is isomorphic to one of Lg, 1 (g = Aℓ (1 ≤ ℓ ≤ 8),
Bℓ (ℓ ≥ 2), Cℓ (2 ≤ ℓ ≤ 4), Dℓ (ℓ ≥ 4), E6, E7, E8, G2, F4), and Lg, 2 (g = A1, A2, D4,
E8, F4, G2), and Lg, 3 (g = A1, E8), and LA1, 4. These affine vertex operator algebras satisfy
non-zero Wronskian condition except for LE8, 1.

Remark. Affine VOAs with dimXg, k = 3 are Lg, 1 (g = A3, A4, Bℓ (ℓ ≥ 3), C2, Dℓ (ℓ ≥ 5)),
and Lg, 2 (g = A1, E8) (see Theorems 9, 11–13 and Table 2).

The remaining of this section is devoted to a proof of this theorem on a case-by-case basis.
First of all, the next lemma is applied to each case, which immediately follows from (5),
Lemma 4 and the fact P k

+ ⊂ P k+1
+ .

Lemma 8. Let S ⊂ P k
+ be a subset. Then conformal weights of Lg, k+1(Λ) for all Λ ∈ S are

mutually distinct if and only if conformal weights of Lg, k(Λ) (Λ ∈ S) are mutually distinct.

We start with type A.

(1) Type A. The system of fundamental weights and the highest root of Aℓ are written by
using elements of Rℓ+1 as

Λi =
1

ℓ+ 1
(

i︷ ︸︸ ︷
ℓ+ 1− i, . . . , ℓ+ 1− i,

ℓ+1−i︷ ︸︸ ︷
−i, . . . ,−i), θ = (1, 0, . . . , 0, 1)

for 1 ≤ i ≤ ℓ. Then it is not hard to show that (Λi|Λj) = j(ℓ+ 1− i)/(ℓ+ 1) (1 ≤ j ≤ i ≤ ℓ)
and (Λi|ρ) = i(ℓ + 1 − i)/2 (1 ≤ i ≤ ℓ). The set of inequivalent simple modules of LAℓ, k is
given by {

LAℓ, k

( ℓ∑
i=1

miΛi

)∣∣∣mi ∈ Z≥0, m1 +m2 + · · ·+mℓ ≤ k
}
.
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Theorem 9. Let XAℓ, k be the space of characters of LAℓ, k and k, ℓ ≥ 1 integers. Then we
have dimXAℓ, 1 = ⌊(ℓ + 1)/2⌋ + 1, dimXA1, k = k + 1 and dimXA2, 2 = 4. Further LAℓ, 1,
LA1, k and LA2, 2 satisfy non-zero Wronskian condition.

Proof. Since the list of inequivalent simple LA1, k–modules is {LA1, k(jΛ1) | 0 ≤ j ≤ k}, the
conformal weights of LA1, k(jΛ1) for 0 ≤ j ≤ k are j(j + 2)/4(k + 2), which are mutually
distinct. Therefore we have dimXA1, k = k + 1. Non-zero Wronskian condition immediately
follows from

k∑
j=0

(
j(j + 4)

4(k + 2)
− 3k

24(k + 2)

)
=

1

12
k(k + 1).

We next prove that dimXAℓ, 1 = ⌊(ℓ + 1)/2⌋ + 1. Since the list of inequivalent simple
LAℓ, 1–modules is LAℓ, 1, LAℓ, 1(Λi) (1 ≤ i ≤ ℓ), it follows from Proposition 5 that dimXAℓ, 1

is at most ⌊(ℓ + 1)/2⌋ + 1. Conformal weights of LAℓ, 1(Λi) (1 ≤ i ≤ ⌊(ℓ + 1)/2⌋) are given
by i(ℓ+ 1− i)/2(ℓ+ 1). Because i(ℓ+ 1− i)/2(ℓ+ 1) and j(ℓ+ 1− j)/2(ℓ+ 1) are mutually
distinct if and only if i = j or i = ℓ+ 1− j, which shows dimXAℓ, 1 = ⌊(ℓ+ 1)/2⌋+ 1.

Finally we prove dimXA2, 2 = 4. The set P̃ 2
+ consists of highest weights 0, Λ1, Λ1 + Λ2,

2Λ1 whose conformal weights are 0, 4/15, 2/3, 3/5, respectively. Now, non-zero Wronskian
condition follows.

Proposition 10. For each integer k ≥ 2 and ℓ ≥ 1, we have dimXAℓ, k ≥ k + ℓ.

Proof. It is obvious that P̃ k
+ contains highest weights Λ1 + Λi (2 ≤ i ≤ ℓ), jΛ1 (0 ≤ j ≤ k)

whose conformal weights are (2ℓ2 + 6ℓ − i2 − 2i + 3)/2(ℓ + 1)(k + ℓ + 1) (2 ≤ i ≤ ℓ),
jℓ(ℓ + j + 1)/2(ℓ + 1)(k + ℓ + 1). The conformal weights of LAℓ, k(Λ1 + Λi) (2 ≤ i ≤ ℓ) are
mutually distinct and ones of LAℓ, k(jΛ1) (0 ≤ j ≤ k) are also mutually distinct. Suppose
that jℓ(ℓ + j + 1)/2(ℓ + 1)(k + ℓ + 1) = (2ℓ2 + 6ℓ − i2 − 2i + 3)/2(ℓ + 1)(k + ℓ + 1). Then
we have i = 1 and j = 2, which contradicts to the assumption 2 ≤ i ≤ ℓ and 0 ≤ j ≤ k.
Therefore the conformal weights of LAℓ, k(Λ1 + Λi) and LAℓ, k(jΛ1) are mutually distinct,
which shows that dimXAℓ, 2 ≥ (k + 1) + (ℓ− 1) = k + ℓ.

Proof of Theorem 7 for type A. By Theorem 9, Proposition 10 and Lemma 8, it suffices to
prove that dimXA3, 2 ≥ 6 and dimXA2, 3 ≥ 6. By direct calculation, we see that the number
of mutually distinct conformal weights of simple LA3, 2–modules and simple LA2, 3–modules
are 7 and 6, respectively. Therefore it follows that dimXAℓ, k ≤ 5 if and only if (k, ℓ) = (1, ℓ)
for 1 ≤ ℓ ≤ 8, (k, ℓ) = (k, 1) for 1 ≤ k ≤ 4, or (k, ℓ) = (2, 2).

(2) Type B. The set of fundamental weights Λi for the finite-dimensional simple Lie algebra

of type Bℓ (ℓ ≥ 3) is written by using elements of Rℓ as

Λi =


(1, . . . , 1︸ ︷︷ ︸

i

, 0, . . . , 0) 1 ≤ i ≤ ℓ− 1 ,

1
2(1, . . . , 1) i = ℓ ,

ρ =
1

2
(2ℓ− 1, 2ℓ− 3, . . . , 3, 1) . (6)
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Then we see that

(Λi|Λj) = i (1 ≤ i ≤ j ≤ ℓ− 1) , (Λi|Λℓ) =
i

2
(1 ≤ i ≤ ℓ− 1) ,

(Λℓ|Λℓ) =
ℓ

4
, (Λi|ρ) =

{
1
2 i(2ℓ− i) 1 ≤ i ≤ ℓ− 1 ,
1
4ℓ

2 i = ℓ .

(7)

and the highest root is given by θ = (1, 1, 0, . . . , 0). Then the list of inequivalent simple
LBℓ, k–modules is {

LBℓ, k

( ℓ∑
i=1

miΛi

) ∣∣∣mi ∈ Z≥0, m1 + 2

ℓ−1∑
i=2

mi +mℓ ≤ k
}
.

Theorem 11. Let XBℓ, k be the space of characters of LBℓ, k and k ≥ 2, ℓ ≥ 3 integers. Then
dimXBℓ, 1 = 3 and dimXBℓ, k ≥ ℓ+1. Further LBℓ, 1 satisfies non-zero Wronskian condition.

Proof. The highest weights of simple LBℓ, 1–modules are 0, Λ1, Λℓ. By (5) and (7), the
conformal weights of simple modules are 0, 1/2, (2ℓ + 1)/16, and then by Lemma 4, we
have dimXBℓ, 1 = 3. Since the sum of all conformal weights is (2ℓ + 9)/16 and the central
charge is (2ℓ+ 1)/2, non-zero Wronskian condition simply holds.

The set P k
+ for k > 1 contains highest weights Λ1,Λ2, . . . ,Λℓ−1, 2Λℓ whose conformal

weights are i(2ℓ+1− i)/2(k+2ℓ− 1) (1 ≤ i ≤ ℓ− 1) and ℓ(ℓ+1)/2(k+2ℓ− 1). It is obvious
that i(2ℓ+1− i) (1 ≤ i ≤ ℓ−1) are mutually distinct and that i(2ℓ+1− i) is equal to ℓ(ℓ+1)
if and only if i = ℓ or i = ℓ+ 1, which is impossible since 1 ≤ i ≤ ℓ− 1. Therefore conformal
weights of simple modules with highest weights 0,Λ1, . . . ,Λℓ−1 and 2Λℓ are mutually distinct,
which shows that dimXBℓ, k ≥ ℓ+ 1 by Lemma 8.

Proof of Theorem 7 for type B. By Lemma 8 and Theorem 11, it suffices to prove
that dimXB3, 2 ≥ 6 and dimXB4, 2 ≥ 6. Since highest weights of inequivalent simple LB3, 2–
modules are 0, Λ1, Λ2, Λ3, 2Λ1, 2Λ3, Λ1 + Λ3 and their conformal weights are 0, 3/7, 5/7,
3/8, 1, 6/7, 7/8, respectively, thus we have dimXB3, 2 = 6. It follows that highest weights
of inequivalent simple LB4, 2 are 0, Λ1, Λ2,Λ3, Λ4, 2Λ1, 2Λ4, Λ1 + Λ4 and their conformal
weights are 0, 4/9, 7/9, 1, 1/2, 1, 10/9, 1, respectively, which implies that dimXB4, 2 ≥ 6.
Therefore dimXBℓ, k ≤ 5 if and only if k = 1.

(3) Type C. The system of fundamental weights and the Weyl vector of finite-dimensional
simple Lie algebra of type C is written by using elements of Rℓ as

Λi =
1√
2
(

i︷ ︸︸ ︷
1, . . . , 1,

ℓ−i︷ ︸︸ ︷
0, . . . , 0) , ρ =

1√
2
(ℓ, ℓ− 1, . . . , 2, 1)

for 1 ≤ i ≤ ℓ. Therefore it follows that

(Λi|Λj) =
1

2
i (1 ≤ i ≤ j ≤ ℓ) , (Λi|ρ) =

1

4
i(2ℓ+ 1− i) . (8)

The highest root is given by θ = (
√
2, 0, . . . , 0) and the list of inequivalent simple LCℓ, k–

modules is {
LCℓ, k

( ℓ∑
i=1

miΛi

) ∣∣∣mi ∈ Z≥0,
ℓ∑

i=1

mi ≤ k
}
.
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Theorem 12. Let XCℓ, k be the space of characters of LCℓ, k and ℓ ≥ 2 an integer. Then
dimXCℓ, 1 = ℓ+ 1 and LCℓ, 1 satisfies non-zero Wronskian condition.

Proof. The highest weights of simple LCℓ, 1–modules are 0, Λi (1 ≤ i ≤ ℓ) whose conformal
weights are respectively given by 0, i(2ℓ + 2 − i)/4(ℓ + 2) by (5) and (8). Then i(2ℓ + 2 −
i)/4(ℓ + 2) = j(2ℓ + 2 − j)/4(ℓ + 2) if and only if i = j or j = 2ℓ + 2 − i, which shows that
conformal weights are mutually distinct. Hence by Lemma 4, we have dimXCℓ, 1 = ℓ + 1.
Non-zero Wronskian condition simply follows.

A lower bound of dimXCℓ, k follows from Lemma 8.

Corollary. dimXCℓ, k ≥ ℓ+ 1 for each integer ℓ ≥ 2 and k ≥ 1.

Proof of Theorem 7 for type C. By Lemma 8, it suffices to prove that dimXCℓ, 2 ≥ 6 for
ℓ ≥ 2. The elements 0, Λ1, Λ2, 2Λ1, 2Λ2, Λ1+Λ2 are highest weights of simple LCℓ, 2–modules
and their conformal weights are 0, (2ℓ+1)/4(ℓ+3), ℓ/(ℓ+3), (ℓ+1)/(ℓ+3), (2ℓ+1)/(ℓ+3),
(6ℓ+3)/4(ℓ+3), respectively. It is obvious that these conformal weights are mutually distinct,
which shows that dimXCℓ, 2 ≥ 6.

(4) Type D. Let Λi (1 ≤ i ≤ ℓ) be the system of fundamental weights of the finite-
dimensional simple Lie algebra of type Dℓ (ℓ ≥ 4). Then fundamental weights and the

Weyl vector are equated with elements of Rℓ: Λi = (

i︷ ︸︸ ︷
1, . . . , 1 ,

ℓ−i︷ ︸︸ ︷
0, . . . , 0) (1 ≤ i ≤ ℓ − 2),

Λℓ−1 = (1/2, . . . , 1/2,−1/2), Λℓ = (1/2, . . . , 1/2) and ρ = (ℓ − 1, ℓ − 2, . . . , 2, 1, 0). Then we
have

(Λi|Λj) = i (1 ≤ i ≤ j ≤ ℓ− 2) , (Λi|Λℓ−1) = (Λi|Λℓ) =
i

2
(1 ≤ i ≤ ℓ− 2) ,

(Λℓ−1|Λℓ−1) = (Λℓ|Λℓ) =
ℓ

4
, (Λℓ−1|Λℓ) =

ℓ− 2

4
,

(Λi|ρ) =

{
1
2 i(2ℓ− i− 1) 1 ≤ i ≤ ℓ− 2 ,
1
4ℓ(ℓ− 1) i = ℓ− 1, ℓ .

(9)

Since the highest root is θ = (1, 1, 0, . . . , 0), the list of inequivalent simple LDℓ, k–modules is
given by {

LDℓ, k

( ℓ∑
i=1

miΛi

) ∣∣∣ mi ∈ Z≥0, m1 + 2
ℓ−2∑
i=2

mi +mℓ−1 +mℓ ≤ k
}
.

Theorem 13. Let XDℓ, k be the space of characters of LDℓ, k. For each positive integer ℓ ≥ 5,
dimXD4, 1 = 2, dimXDℓ, 1 = 3 and dimXD4, 2 = 5. Further LDℓ, 1 (ℓ ≥ 4) and LD4, 2 satisfy
non-zero Wronskian condition.

Proof. The highest weights of simple LDℓ, 1–modules are 0, Λ1, Λℓ−1 and Λℓ. By Proposi-
tion 5, the characters chΛℓ−1

and chΛℓ
coincide, and for ℓ = 4 the character chΛ1 coincides

with chΛ3 and chΛ4 . It follows from (5) and (9) that all conformal weights are given by 0,
1/2, ℓ/8. By Proposition 6 we have dimXDℓ, 1 = 3 (ℓ > 4) and dimXD4, 1 = 2. The elements

of P̃ 2
+ for LD4, 2 are 0, Λ1, 2Λ1, Λ1 + Λ3, Λ2 whose conformal weights are 0, 7/16, 1, 15/16,

and 3/4, respectively, which shows that dimLD4, 2 = 5. Non-zero Wronskian condition is
obvious since the central charges of LDℓ, 1 and LD4, 2 are ℓ and 7, respectively.
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Type g E6 E6 E7 E7 E8 E8 E8 E8 F4 F4 F4 G2 G2 G2

Level k 1 2 1 2 1 2 3 4 1 2 3 1 2 3

dimXg, k 2 6 2 6 1 3 5 10 2 5 9 2 4 6

Table 2: dimXg, k for exceptional types

Proposition 14. We have dimXDℓ, k ≥ ℓ+ 1 for each integer ℓ ≥ 4 and k ≥ 2.

Proof. The set P k
+ contains highest weights 0, Λi (1 ≤ i ≤ ℓ − 2), 2Λℓ, Λℓ−1 + Λℓ whose

conformal weights are respectively given by 0, i(2ℓ − i)/2(k + 2ℓ − 2) (1 ≤ i ≤ ℓ − 2),
ℓ2/(k+2ℓ−2) and (ℓ2−1)/(k+2ℓ−2). Since these conformal weights are mutually distinct,
we have dimXDℓ, k ≥ ℓ+ 1.

Proof of Theorem 7 for type D. By Lemma 8, Theorem 13 and Proposition 14 it
suffices to prove that dimXD4, 3 ≥ 6. We see that there are simple LD4, 3–modules whose
conformal weights are 0, 7/18, 8/9, 3/2, 5/6, 25/18, 2/3, 7/6 and 4/3. Thus it follows
that dimXD4, 3 ≥ 9.

(5) Exceptional types. The list of fundamental weights of finite-dimensional simple Lie
algebras of exceptional types is found in [7, pp. 69]. By (5) and Lemma 4, we obtain Table 2
(for E6, we also use Propositions 5 and 6). Affine VOAs in Table 2 with 2 ≤ dimXg, k ≤ 5
satisfy non-zero Wronskian condition.

4 Tables of dimensions of spaces of characters of

simple modules

In this section we give lists of affine VOAs of positive integral levels, which have simple
modules not exceeding 20. Each list includes information of central charges, dimensions of
the spaces of characters and non-zero Wronskian condition.

Remark. Let Cg, k be the set of inequivalent simple modules of an affine VOA of level k
associated with the finite-dimensional simple Lie algebra g such that ♯Cg, k ≤ 20. There
are 117 and two discrete infinite series of affine VOAs with this property.
(1) Suppose that Lg, k is neither LB4, 2 nor LB4, 3. Then the characters in Xg, k with same
conformal weights are linearly independent if they are distinct each other.
(2) If Lg, k does not satisfy non-zero Wronskian condition, then there are two conformal
weights that differ by an integer. However, the converse is not true. In fact, conformal
weights of simple LD8, 1–modules are 0, 1/2,1, although LD8, 1 satisfies non-zero Wronskian
condition.

We give tables of dimensions of Xg, k and explain methods which we used to determine
dimXg, k as well as non-zero Wronskian condition. Each table consists of data of types of
Lie algebras, levels, central charges, dimensions of the spaces of characters and non-zero
Wronskian condition (we write e if Lg, k satisfies non-zero Wronskian condition and × oth-
erwise). Furthermore, we indicate a method by which we determine dimXg, k in the 5th row.
Each of symbols –, e, ♢ means that we have determined dimXg, k by using the the fact Lg, k
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has mutually different conformal weights, diagram automorphisms (Propositions 5 and 6),
S-matrices (which are explained in the next section).

We start with affine VOAs which have 4 simple modules.

1) 4 simple modules. There are 5 affine VOAs and a (discrete) series of affine VOAs which
have 4 simple modules; LA1, 3, LA3, 1, LC3, 1, LD4, 1, LDℓ, 1 (ℓ ≥ 5) and LG2, 2.

Information
g

A1 A3 C3 D4 Dℓ (ℓ ≥ 5) G2

Level k 3 1 1 1 1 2

Central charge 9/5 3 21/5 4 ℓ 14/3

dimXg, k 4 3 4 2 3 4

Method – e – e e –

NZWC e e e e e e
Table 3: 4 simple modules

2) 5 simple modules. There are 5 affine VOAs whose numbers of inequivalent simple
modules are 5; LA1, 4, LA4, 1, LC4, 1, LE8, 3 and LF4, 2.

Information
g

A1 A4 C4 E8 F4

Level k 4 1 1 3 2
Central charge 2 4 6 248/11 104/11

dimXg, k 5 3 5 5 5
Method – e – – –
NZWC e e e e e

Table 4: 5 simple modules

3) 6 simple modules. There are 7 affine VOAs whose numbers of inequivalent simple
modules are 6; LA1, 5, LA2, 2, LA5, 1, LC2, 2, LC5, 1, LE7, 3 and LG2, 2.

4) 7 simple modules. There are 4 affine VOAs whose numbers of inequivalent simple
modules are 7; LA1, 6, LA6, 1, LB3, 2 and LC6, 1.

5) 8 simple modules. There are 4 affine VOAs whose numbers of inequivalent simple
modules are 8; LA1, 7, LA7, 1, LB4, 2 and LC7, 1. The dimension XB4, 2 is determined in Propo-
sition 16 in §5.

6) 9 simple modules. There are 7 affine VOAs whose numbers of inequivalent simple
modules are 9; LA1, 8, LA8, 1, LB5, 2, LC8, 1, LE6, 2, LF4, 3 and LG2, 4.

7) 10 simple modules. There are 9 affine VOAs whose numbers of inequivalent simple
modules are 10; LA1, 9, LA2, 3, LA3, 2, LA9, 1, LB6, 2, LC2, 3, LC3, 2, LC9, 1 and LE8, 4.
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Information
g

A1 A2 A5 C2 C5 E7 G2

Level 5 2 1 2 1 2 3

Central charge 15/7 16/5 5 4 55/7 133/10 6

dimXg, k 6 4 4 6 6 6 6

Method – e e – – – –

NZWC e e e × e e ×

Table 5: 6 simple modules

Information
g

A1 A6 B3 C6

Level 6 1 2 1

Central charge 9/4 6 6 39/4

dimXg, k 7 4 7 7

Method – e – –

NZWC e e × e
Table 6: 7 simple modules

Information
g

A1 A7 B4 C7

Level k 7 1 2 1

Central charge 7/3 7 8 35/3

dimXg, k 8 5 7 8

Method – e ♢ –

NZWC e e e e
Table 7: 8 simple modules

Information
g

A1 A8 B5 C8 E6 F4 G2

Level k 8 1 2 1 2 3 4

Central charge 12/5 8 10 68/5 78/7 13 7

dimXg, k 9 5 9 9 6 9 9

Method – e – – e – –

NZWC e e × e e × ×

Table 8: 9 simple modules
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Information
g

A1 A2 A3 A9 B6 C2 C3 C9 E8

Level k 9 3 2 1 2 3 2 1 4

Central charge 27/11 4 5 9 12 5 7 171/11 496/17

dimXg, k 10 6 7 6 10 10 10 10 10

Method – e e e – – – – –

NZWC e × × e × × × e ×

Table 9: 10 simple modules

8) 11 simple modules. There are 5 affine VOAs whose numbers of inequivalent simple
modules are 11; LA1, 10, LA10, 1, LB7, 2, LC10, 1 and LD4, 2.

Information
g

A1 A10 B7 C10 D4

Level k 10 1 2 1 2

Central charge 5/2 10 14 35/2 7

dimXg, k 11 6 11 11 5

Method – e – – e
NZWC e e × e e

Table 10: 11 simple modules

9) 12 simple modules. There are 7 affine VOAs whose numbers of inequivalent simple
modules are 12; LA1, 11, LA11, 1, LB8, 2, LC11, 1, LD5, 2, LE7, 3 and LG2, 5. The dimension of
XB8, 2 is determined in Proposition 18 in §5.

Information
g

A1 A11 B8 C11 D5 E7 G2

Level k 11 1 2 1 2 3 5

Central charge 33/13 11 16 253/13 9 19 70/9

dimXg, k 12 7 12 12 9 12 12

Method – e ♢ – e – –

NZWC e e × e × × ×

Table 11: 12 simple modules

10) 13 simple modules. There are 6 affine VOAs whose numbers of inequivalent simple
modules are 13; LA1, 12, LA12, 1, LB3, 3, LB9, 2, LC12, 1 and LD6, 2.

11) 14 simple modules. There are 5 affine VOAs whose numbers of inequivalent simple
modules are 14; LA1, 13, LA13, 1, LB10, 2, LC13, 1 and LD7, 2.
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Data
g

A1 A12 B3 B9 C12 D6

Level k 12 1 3 2 1 2

Central charge 18/7 12 63/8 18 150/7 11

dimXg, k 13 7 13 13 13 10

Method – e – – – e
NZWC e e × × e ×

Table 12: 13 simple modules

Information
g

A1 A13 B10 C13 D7

Level k 13 1 2 1 2

Central charge 13/5 13 20 117/5 13

dimXg, k 14 8 14 14 11

Method – e – – e
NZWC e e × e ×

Table 13: 14 simple modules

12) 15 simple modules. There are 10 affine VOAs whose numbers of inequivalent simple
modules are 15; LA1, 14, LA14, 1, LA2, 4, LA4, 2, LB11, 2, LC2, 4, LC14, 1, LC4, 2, LD8, 2 and LE8, 5.

Information
g

A1 A14 A2 A4 B11 C2 C14 C4 D8 E8

Level k 14 1 4 2 2 4 1 2 2 5

Central charge 21/8 14 32/7 48/7 22 40/7 203/8 72/7 15 248/7

dimXg, k 15 8 9 9 15 15 15 15 12 15

Method – e e e – – – – e –

NZWC e e × × × × e × × ×

Table 14: 15 simple modules

13) 16 simple modules. There are 8 affine VOAs whose numbers of inequivalent simple
modules are 16; LA1, 15, LA15, 1, LB12, 2, LB4, 3, LC15, 1, LD9, 2, LF4, 4 and LG2, 6. The dimen-
sions of XB12, 2 and XB4, 3 are determined in Propositions 19 and 17 in §5, respectively.

14) 17 simple modules. There are 5 affine VOAs whose numbers of inequivalent simple
modules are 17; LA1, 16, LA16, 1, LB13, 2, LC16, 1 and LD10, 2.

15) 18 simple modules. There are 5 affine VOAs whose numbers of inequivalent simple
modules are 18; LA1, 17, LA17, 1, LB14, 2, LC17, 1 and LD11, 2.
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Information
g

A1 A15 B12 B4 C15 D9 F4 G2

Level k 15 1 2 3 1 2 4 6

Central charge 45/17 15 24 54/5 465/17 17 16 42/5

dimXg, k 16 9 16 14 16 13 16 16

Method – e ♢ ♢ – e – –

NZWC e e × × e × × ×

Table 15: 16 simple modules

Information
g

A1 A16 B13 C16 D10

Level k 16 1 2 1 2

Central charge 8/3 16 26 88/3 19

dimXg, k 17 9 17 17 14

Method – e – – e
NZWC e e × e ×

Table 16: 17 simple modules

Information
g

A1 A17 B14 C17 D11

Level k 17 1 2 1 2

Central charge 51/19 17 28 595/19 21

dimXg, k 18 10 18 18 15

Method – e – – e
NZWC e e × e ×

Table 17: 18 simple modules

18



16) 19 simple modules. There are 6 affine VOAs whose numbers of inequivalent simple
modules are 19; LA1, 18, LA18, 1, LB15, 2, LB5, 3, LC18, 1 and LD12, 2. The dimension of XB5, 3 is
determined in Proposition 20 in §5. Non-zero Wronskian condition for LB5, 3 is not yet to be
determined (see Remark in §5.3).

Information
g

A1 A18 B15 B5 C18 D12

Level k 18 1 2 3 1 2

Central charge 27/10 18 30 55/4 333/10 23

dimXg, k 19 10 19 19 19 16

Method – e – ♢ – –

NZWC e e × ? 0 ×

Table 18: 19 simple modules

17) 20 simple modules. There are 9 affine VOAs whose numbers of inequivalent simple
modules are 20; LA1, 19, LA19, 1, LA3, 3, LB16, 2, LC19, 1, LC3, 2, LD13, 2, LE6, 3 and LG2, 7.

Information
g

A1 A19 A3 B16 C19 C3 D13 E6 G2

Level k 19 1 3 2 1 3 2 3 7

Central charge 19/7 19 45/7 32 247/7 9 25 78/5 98/11

dimXg, k 20 11 13 20 20 20 17 12 20

Method – e e – – – – e –

NZWC e e × × e × × × ×

Table 19: 20 simple modules

5 The spaces of characters of some affine vertex

operator algebras of type B

In this section we determine the dimensions of spaces of characters of affine VOAs LBℓ, 2 (ℓ =
4, 8, 12) and LBℓ, 3 (ℓ = 4, 5). Since it seems that we cannot determine the dimensions of spaces
of characters in this case by information of conformal weights and diagram automorphisms,
we further use the techniques of S-matrix.

Let P k
+ be a set of dominant integral weights of positive integral level k of an affine

VOA Lg, k. It is well-known ([9, 8]) that characters transform under τ 7→ −1/τ as

chΛ(−1/τ) =
∑

Λ′∈Pk
+

S(Λ,Λ′) chΛ′(τ) , S(Λ,Λ′) ∈ C.
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Proposition 15 ([10, pp. 181][18, Proposition 4.19, pp. 236 (ii)]). Let Λ,Λ′ ∈ P k
+ of LBℓ, k

and Λ =
∑ℓ

i=1miΛi and Λ′ =
∑ℓ

i=1 niΛi. Then

S(Λ,Λ′) = iℓ(ℓ−1)2ℓ−1(k + 2ℓ− 1)−ℓ/2 det

(
sin

2πsitj
k + 2ℓ− 1

)
1≤i,j≤ℓ

,

where

si = ℓ+
1

2
− i+

ℓ−1∑
j=i

mj +
mℓ

2
, ti = ℓ+

1

2
− i+

ℓ−1∑
j=i

nj +
nℓ

2

for 1 ≤ i ≤ ℓ. In particular, S(Λ,Λ′) for LBℓ, 2 is given in Table 20, where we set λ1 = Λ1,
λj = Λj (2 ≤ j ≤ ℓ− 1), λℓ = 2Λℓ.

Λ
Λ′

0 2Λ1 Λℓ Λ1 + Λℓ λk

0 1
2
√
2ℓ+1

1
2
√
2ℓ+1

1
2

1
2

1
2ℓ+1

2Λ1
1

2
√
2ℓ+1

1
2
√
2ℓ+1

−1
2 −1

2
1

2ℓ+1

Λℓ
1
2 −1

2
1
2 −1

2 0

Λ1 + Λℓ
1
2 −1

2 −1
2

1
2 0

λj
1√
2ℓ+1

1√
2ℓ+1

0 0 2√
2ℓ+1

cos 2πjk
2ℓ+1

Table 20: List of S(Λ,Λ′) for LBℓ, 2

5.1 B4 of level 2 and 3

We first determine the dimension of the space of characters of LB4, 2. The highest weights
of simple LB4, 2-modules are given by 0, Λ1, Λ2, Λ3, Λ4, 2Λ1, 2Λ4, Λ1 + Λ4 whose conformal
weights are respectively given by

0,
4

9
,
7

9
, 1,

1

2
, 1,

10

9
, 1. (10)

We prove a relation chΛ3 +ch2Λ1 − chΛ1+Λ4 = 0. As being stated in Proposition 15 (also see
[18, pp. 236 (ii)]) the S-transformations of characters chΛ3 , chΛ1+Λ4 , ch2Λ1 are

chΛ3 −→ 1

3
ch0+

1

3
ch2Λ1 −

1

3
chΛ1 −

1

3
chΛ2 +

2

3
chΛ3 −

1

3
ch2Λ4 , (11)

chΛ1+Λ4 −→ 1

2
ch0−

1

2
ch2Λ1 −

1

2
chΛ4 +

1

2
chΛ1+Λ4 , (12)

ch2Λ1 −→ 1

6
ch0+

1

6
ch2Λ1 −

1

2
chΛ4 −

1

2
chΛ1+Λ4 +

1

3
chΛ1 +

1

3
chΛ2 +

1

3
chΛ3 +

1

3
ch2Λ4 (13)

It follows by (11)–(13) thatf(−1/τ) = f(τ), where f = chΛ3 +ch2Λ1 − chΛ1+Λ4 . Since the
central charge of LBℓ, 2 is 8, the lowest power of q in f is not smaller than 2/3. Therefore f3

is a holomorphic cusp form of weight 0, which shows f = 0.
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Proposition 16. dimXB4, 2 = 7 and chΛ3 +ch2Λ1 = chΛ1+Λ4. Moreover, LB4, 2 satisfies
non-zero Wronskian condition.

Proof. The relation chΛ3 +ch2Λ1 = chΛ1+Λ4 was already proved. By (10) and Lemma 4,
it suffices to prove linear independence of chΛ3 and ch2Λ1 . Suppose that a chΛ3 +b ch2Λ1 =
0. By Weyl’s dimension formula, we have 84a + 44b = 0. It follows from Proposition 15
that S(Λ3,Λ4) = 0 and S(2Λ1,Λ4) = −1/2. Since the conformal weight of LB4, 2(Λ4) is 1/2
and 1/2 + Z>0 are not conformal weights, the coefficient of q1/6 of the S-transformation of
the linear relation yields b/2 = 0. Therefore we have a = b = 0.

We next show that LB4, 2 satisfies non-zero Wronskian condition. Since chΛ3 and ch2Λ1

have the same lowest powers, we have normalized forms of them as q2/3+ . . . and qA−1/3+ . . .
with A ∈ Z>1. Then, by (10), Mason’s inequality 42−12 (3/2 +A) = 24−12A ≥ 0 yields A =
2, which shows at the same time that LB4, 2 satisfies non-zero Wronskian condition.

The number of simple LB4, 3–modules is 16. The conformal weights are 0, 9/20, 1,
33/20, 9/10, 3/2, 7/10, 5/4, 2/5, 9/10, 3/2, 7/5, 6/5, 9/10, 29/20, 3/2. The highest
weights with conformal weight 9/10 are Λ3, 2Λ1 and Λ1 + Λ4, and the highest weights with
conformal weight 3/2 are 3Λ1, Λ1 + 2Λ3 and Λ3 + Λ4. Let g = chΛ3 +ch2Λ1 − chΛ1+Λ4

and h = chΛ3+Λ4 +ch3Λ1 − chΛ1+2Λ4 , and we prove that g = h = 0. By Proposition 15 it
follows that

g(−1/τ) =

√
5−

√
5

10
g(τ) +

√
5 +

√
5

10
h(τ), h(−1/τ) =

√
5 +

√
5

10
g(τ)−

√
5−

√
5

10
h(τ).

Then t(g, h) is a vector-valued modular form of weight 0. Suppose that t(g, h) is a non-zero
vector-valued function. The lowest powers in q of g and h are not smaller than 9/20 and
21/20, respectively since the central charge of LB4, 3 is 54/5. If both g and h are not zero,
then g and h are linearly independent since their lowest powers of q do not have an integral
difference. We write the lowest powers of q in them by A ∈ 9/20+Z≥0 and B ∈ 21/20+Z≥0,
respectively. Then Mason’s inequality is equivalent to 2 − 12(9/20 + 21/20 + A + B) =
−4(4 + 3A + 3B) ≥ 0, which is a contradiction. If h = 0, then g ̸= 0 and the lowest power
in q of g is positive, which contradicts to Mason’s inequality. Therefore, we have g = h = 0,
that is, chΛ3 +ch2Λ1 = chΛ1+Λ4 and chΛ3+Λ4 +ch3Λ1 = chΛ1+2Λ4 .

Proposition 17. dimXB4, 3 = 14 and chΛ3 +ch2Λ1 = chΛ1+Λ4, chΛ3+Λ4 +ch3Λ1 = chΛ1+2Λ4.
Non-zero Wronskian condition does not hold.

Proof. We prove that both sets {chΛ3 , ch2Λ1} and {chΛ3+Λ4 , ch3Λ1} are linearly independent.
Suppose that a chΛ3 +b ch2Λ1 = 0 with some a, b ∈ C. By Weyl’s dimension formula, the co-
efficient of q9/20 is 84a + 44b = 0. Then by Proposition 15, we have S(Λ3,Λ4) = 1/2

√
5

and S(2Λ1,Λ4) = −1/2
√
5. Since the conformal weight of LB4, 3(Λ4) is 9/20 and any

number in the set 9/20 + Z>0 is not a conformal weight, the coefficient of q0(= 1) of the
S-transformation of the relation a chΛ3 +b ch2Λ1 = 0 is a/2

√
5 − b/2

√
5 = 0. Thus we

have a = b = 0. Also suppose that c chΛ3+Λ4 +d ch3Λ1 = 0 with c, d ∈ C. Then the same
discussions given above show c = d = 0.

The normalized forms of chΛ3 and ch2Λ1 are q9/20+ · · · and q9/20+A+ · · · with A−9/20 ∈
Z>0, and ones of chΛ3+Λ4 and ch3Λ1 are q21/20+ · · · and qB+21/20+ · · · with B−21/20 ∈ Z>0.
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Then by Mason’s inequality, we have −4(3A + 3B − 26) ≥ 0. Setting A = (9 + 20m)/20
and B = (21 + 20n)/20 for positive integers m and n, we have 3m + 3n ≤ 43/2. Therefore,
non-zero Wronskian condition does not hold, i.e. there are no m and n such that 3(m+n) =
43/2.

5.2 B8 and B12 of level 2

The number of inequivalent simple LB8, 2–modules is 12, the central charge of LB8, 2 is 16 and
the conformal weights of simple LB8, 2–modules are

0, 1,
36

17
,
35

17
,
33

17
,
30

17
,
26

17
,
21

17
,
15

17
,

8

17
,
3

2
, 1, (14)

where the highest weights of simple modules with conformal weight 1 are Λ8 and 2Λ1.

Proposition 18. dimXB8, 2 = 12 and LB8, 2 does not satisfy non-zero Wronskian condition.

Proof. By Lemma 4 and (14), it suffices to prove chΛ8 and ch2Λ1 are linearly independent.
Suppose that a chΛ8 +b ch2Λ1 = 0. By Weyl’s dimension formula, the coefficient of q1/3 of
the linear relation is 256a+ 152b = 0 and it follows from Proposition 15, we have S(Λ8, 0) =
1/2

√
17 and S(2Λ1, 0) = 1/2. Applying S-transformation and taking the coefficient of q−2/3

of the linear relation we have a/2
√
17 + b/2 = 0, and hence a = b = 0.

The normalization of chΛ8 and ch2Λ1 are q1/3 + · · · and qA−2/3 + · · · with A ∈ Z>0.
Then Mason’s inequality implies 54 − 12A ≥ 0, which shows non-zero Wronskian condition
failed.

We next determine dimXB12, 2. The number of simple LB12, 2–modules is 16 and the
central charge of LB12, 2 is 24. The conformal weights of simple LB12, 2–modules are 0, 12/25,
23/25, 1, 33/25, 3/2, 42/25, 2, 2, 57/25, 63/25, 68/25, 72/25, 3, 77/25, 78/25 where the
highest weights of simple modules with conformal weight 2 are Λ5 and Λ1 + Λ12.

Proposition 19. dimXB12, 2 = 16 and LB12, 2 does not satisfy non-zero Wronskian condition.

Proof. It is enough to prove that chΛ5 and chΛ1+Λ12 are linearly independent. Suppose
that a chΛ5 +b chΛ1+Λ12 = 0 with some a, b ∈ C. By Weyl’s dimension formula, we have
53130a + 98304b = 0. It follows from Proposition 15 that S(Λ5,Λ12) = 0 and S(Λ1 +
Λ12,Λ12) = −1/2. Since the conformal weight of LB12, 2(Λ12) is 3/2, and any number in the
set 3/2+Z>0 is not a conformal weight, taking the coefficient of q1/2 of the S-transformation
of the linear relation gives −b/2 = 0, which yields a = b = 0. The normalization of chΛ5 and
chΛ1+Λ12 are 1+ · · · and qA−1+ . . . with A ∈ Z>3 since there is a simple module LB12, 2(Λ10)
with conformal weight 3. Thus Mason’s inequality yields 90−12A ≥ 0, which shows non-zero
Wronskian condition failed.

5.3 B5 of level 3

The number of simple LB5, 3–modules is 19 and its central charge is 55/4. The conformal
weights of simple modules are 0, 5/12, 55/96, 3/4, 11/12, 1, 33/32, 7/6, 5/4, 5/4, 45/32, 3/2,
3/2, 151/96, 5/3, 163/96, 7/4, 61/32, 65/32. The highest weights of simple modules with
conformal weights 5/4 and 3/2 are 2Λ5, Λ1 + Λ2, and 3Λ1, Λ1 + Λ3, respectively.
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Proposition 20. dimXB5, 3 = 19.

Proof. It is enough to prove that {ch2Λ5 , chΛ1+Λ2} and {ch3Λ1 , chΛ1+Λ3} are linearly inde-
pendent. Suppose that a ch2Λ5 +b chΛ1+Λ2 = 0. By Weyl’s dimension formula, the coef-
ficient of q5/4−55/96(= q65/96) of both sides gives 462a + 429b = 0. By Proposition 15,
we have S(2Λ5,Λ5) = 1/2

√
6 and S(Λ1 + Λ2,Λ5) = −1/2

√
2. Since the conformal weight

of LB5, 3(Λ5) is 55/96 and any number in the set 55/96 + Z<0 is not a conformal weight, the
coefficient of q0(= 1) of the S-transformation of the relation is a/2

√
6−b/2

√
2 = 0. Therefore

we have a = b = 0. Suppose that c ch3Λ1 +d chΛ1+Λ3 = 0 with c, d ∈ C. The same discussion
above shows that c = d = 0.

Remark. Non-zero Wronskian condition for LB5, 3 does not follow directly. The normaliza-
tion of the characters ch2Λ5 and chΛ1+Λ2 are q5/4−55/96+ · · · and q5/4+A−55/96+ · · · with A ∈
Z>0, and ones of ch3Λ1 and chΛ1+Λ3 are q3/2−55/96 + · · · and q3/2+B−55/96 with B ∈ Z>0.
Then Mason’s inequality implies −12(−16+A+B) ≥ 0. It seems to be hard to determine A
and B without knowing coefficients of higher power of q.
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1. Deligne, P.: La série exceptionnalle de groupes de Lie. C. R. Acad. Sci. Paris Sr. I Math.
322 321326 (1996).

2. Dong, C., Li, H., and Mason, G.: Modular-invariance of trace functions in orbifold theory
and generalized Moonshine, Commun. Math. Phys. 214 1–56 (2000)

3. Eguchi, T. and Ooguri, H.: Differential equations for conformal characters in moduli space,
Physics Letters B 203, 44–46 (1988)

4. Eguchi, T. and Ooguri, H.: Differential equations for characters of Virasoro and affine Lie
algebras, Nuclear Phys. B 313, 492–508 (1989)

5. Frenkel, I. and Zhu, Y.: Vertex operator algebras associated to representations of affine
and Virasoro algebras, Duke Math. J. 66 No. 1 123–168 (1992)

6. Fuchs, J., Schellekens, B. and Schweigert, C.: From Dynkin diagram symmetries to fixed
point structures, Commun. Math. Phys. 180 39–97 (1996)

23



7. Humphreys, J. E.: Introduction to Lie algebras and representation theory, Graduate Texts
in Mathematics, Vol. 9, Springer-Verlag, New York–Berlin (1978)

8. Kac, V. G.: Infinite dimensional Lie algebras, 3rd edition, Cambridge University Press,
Cambridge (1990)

9. Kac, V. G. and Peterson, D. H.: Infinite-dimensional Lie algebras, theta functions and
modular forms, Adv. Math. 53 125–264 (1984)

10. Kac, V. G. and Wakimoto, M.: Modular and conformal invariance constraints in repre-
sentation theory of affine algebras, Adv. Math. 70 156–236 (1988)

11. Kaneko, M., Nagatomo, K. and Sakai, Y.: Modular forms and second order ordinary
differential equations: applications to vertex operator algebras. Lett. Math. Phys. 103
no. 4 439–453 (2013)

12. Kaneko, M. and Zagier, D.: Supersingular j-invariants, hypergeometric series, and
Atkin’s orthogonal polynomials, AMS/IP Studies in Advanced Mathematics, 7 97–126
(1998)

13. Marks, C.: Irreducible vector-valued modular forms of dimension less than six, Illinois
Journal of Mathematics 55 No. 4 1267–1297 (2011)

14. Mason, G.: Vector-valued modular forms and linear differential operators, Int. J. Number
Theory, 3 no. 3 377–390 (2007)

15. Mathur, S. D., Mukhi, S. and Sen A.: On the classification of rational conformal field
theories, Phys. Letter B 213 No. 3 303–308 (1988)

16. Milas, A.: Ramanujan’s “Lost Notebook” and the Virasoro algebra, Com-
mun. Math. Phys. 251 567–588 (2004)

17. Milas, A.: Virasoro algebra, Dedekind η-functions and specialized Macdonald identities,
Transformation Groups 9, No. 3. 273–288 (2004)

18. Wakimoto, M.: Infinite-dimensional Lie algebras, Translated from the 1999 japanese
original by Kenji Iohara. Translations of Mathematical monographs 195 Iwanami Series
in Modern Mathematics. American Mathematical Society, Providence (2001)

19. Zhu, Y.: Modular invariance of characters of vertex operator algebras, Journal of the
American Mathematical Society 9 No. 1 237–302 (1996)

24


